Infrared spectroscopy of ionized corannulene in the gas phase.
نویسندگان
چکیده
The gas-phase infrared spectra of radical cationic and protonated corannulene were recorded by infrared multiple-photon dissociation (IRMPD) spectroscopy using the IR free electron laser for infrared experiments. Electrospray ionization was used to generate protonated corannulene and an IRMPD spectrum was recorded in a Fourier-transform ion cyclotron resonance mass spectrometer monitoring H-loss as a function of IR frequency. The radical cation was produced by 193-nm UV photoionization of the vapor of corannulene in a 3D quadrupole trap and IR irradiation produces H, H(2), and C(2)H(x) losses. Summing the spectral response of the three fragmentation channels yields the IRMPD spectrum of the radical cation. The spectra were analyzed with the aid of quantum-chemical calculations carried out at various levels of theory. The good agreement of theoretical and experimental spectra for protonated corannulene indicates that protonation occurs on one of the peripheral C-atoms, forming an sp(3) hybridized carbon. The spectrum of the radical cation was examined taking into account distortions of the C(5v) geometry induced by the Jahn-Teller effect as a consequence of the degenerate (2)E(1) ground electronic state. As indicated by the calculations, the five equivalent C(s) minima are separated by marginal barriers, giving rise to a dynamically distorted system. Although in general the character of the various computed vibrational bands appears to be in order, only a qualitative match to the experimental spectrum is found. Along with a general redshift of the calculated frequencies, the IR intensities of modes in the 1000-1250 cm(-1) region show the largest discrepancy with the harmonic predictions. In addition to CH "in-plane" bending vibrations, these modes also exhibit substantial deformation of the pentagonal inner ring, which may relate directly to the vibronic interaction in the radical cation.
منابع مشابه
Structure determination of gas-phase niobium and tantalum carbide nanocrystals via infrared spectroscopy.
Niobium and tantalum carbide clusters have been isolated in the gas phase and irradiated with intense tunable infrared (IR) light. Stable neutral clusters are selectively ionized and subsequently detected in a mass spectrometer. By tuning the IR frequency, infrared multiphoton absorption spectra are obtained for a whole range of clusters. These mass-selective IR spectra lead to insights into th...
متن کاملChange of the tautomeric preference for radical cation of pyruvic acid. DFT studies in the gas phase
Keto-enol tautomerism was investigated for ionized pyruvic acid using the DFT(B3LYP) method and the larger basis sets [6-31++G(d,p), 6-311++G(3df, 3pd) and aug-cc-pVDZ]. Change of the tautomeric preference was observed when going from the neutral to ionized tautomeric mixture. Ionization favors the enolization process (ketoenol) of pyruvic acid, whereas the ketonization (ketoenol) is preferred ...
متن کاملSingle photon infrared emission spectroscopy of the gas phase pyrene cation: support for a polycyclic aromatic hydrocarbon origin of the unidentified infrared emission bands.
We report the first observation of infrared emission from a gaseous ionic polycyclic aromatic hydrocarbon (PAH), the pyrene cation, over the range of wavelengths spanned by the ubiquitous interstellar unidentified infrared emission bands (UIRs). The complete set of pyrene cation IR emissions is observed, with relative intensities consistent with astrophysical observations, supporting the propos...
متن کاملTautomeric equilibria for ionized oxamic acid - inhibitor of LDH
Amide-iminol tautomerism was studied for ionized oxamic acid (OA+•) in the gas phase using theDFT method with the UB3LYP functional and various basis sets {6-31++G(d,p), 6-311+G(d,p), and augcc-pVDZ}. Among twenty tautomers-rotamers possible for OA+•, eleven isomers were found to bethermodynamically stable. Similarly as for the neutral molecule, ionization (OA → OA+• + e) favors theamidization ...
متن کاملQuadruple Anionic Buckybowls by Solid-State Chemistry of Corannulene and Cesium
The buckybowl corannulene is known to be an excellent electron acceptor. UV photoelectron spectroscopy studies were performed with thin-film systems containing corannulene and cesium. Adsorption of submonolayer quantities of corannulene in ultrahigh vacuum onto thick Cs films, deposited at 100 K on a copper(111) substrate, induces a transfer of four electrons per molecule into the two lowest un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 134 5 شماره
صفحات -
تاریخ انتشار 2011